Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Goniometrische functie differentiëren

Ik raak bij het differentiëren in de knoop bij de volgende opgave:

Differentieer:
  • f(x)=(sinx-cosx)/(sinx+cosx)

mboudd
Leerling mbo - zondag 10 maart 2019

Antwoord

Gewoon flink doorschrijven en de haakjes wegwerken:

$
\eqalign{
& f(x) = \frac{{\sin (x) - \cos (x)}}
{{\sin (x) + \cos (x)}} \cr
& f'(x) = \frac{{\left( {\cos (x) - - \sin (x)} \right)\left( {\sin (x) + \cos (x)} \right) - (\sin (x) - \cos (x))\left( {\cos (x) - \sin (x)} \right)}}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr
& f'(x) = \frac{{\left( {\cos (x) + \sin (x)} \right)\left( {\sin (x) + \cos (x)} \right) + (\sin (x) - \cos (x))\left( {\sin (x) - \cos (x)} \right)}}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr
& f'(x) = \frac{{\left( {\sin (x) + \cos (x)} \right)^2 + (\sin (x) - \cos (x))^2 }}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr
& f'(x) = \frac{{\sin ^2 (x) + 2\sin (x)\cos (x) + \cos ^2 (x) + \sin ^2 (x) - 2\sin (x)\cos (x) + \cos ^2 (x)}}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr
& f'(x) = \frac{{\sin ^2 (x) + \cos ^2 (x) + \sin ^2 (x) + \cos ^2 (x)}}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr
& f'(x) = \frac{{1 + 1}}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr
& f'(x) = \frac{2}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr}
$

't Is een leukerd...

WvR
zondag 10 maart 2019

©2001-2024 WisFaq