Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Differentiëren van goniometrische functies met de kettingregel

Ik moet de volgende functie differentiëren ik wil 'm eerst in losse functies xetten daarbij loop ik vast:

f(x) = 5sin52x
stel 2x = p en sinp = q
p(x) = 2x $\Rightarrow$ dp/dx = 2
q(p) = sinp $\Rightarrow$ dq/dp = cosp

Ik weet nu niet hoe ik verder moet...

mboudd
Leerling mbo - zondag 10 maart 2019

Antwoord

Wat dacht je van:

$
\eqalign{
& f(x) = 5 \cdot \sin ^5 (2x) \cr
& f'(x) = 5 \cdot 5 \cdot \sin ^4 (2x) \cdot \cos (2x) \cdot 2 \cr
& f'(x) = 50\sin ^4 (2x)\cos (2x) \cr}
$

Niet moeilijker doen dan nodig?Naschrift
Er is hier sprake van 3 functies. Dat maakt een aanpak met $\eqalign{\frac{dx}{du}}$ misschien iets lastiger, maar 't kan natuurlijk ook. Als je wilt wil ik dat een keer doen, als dat nuttig is.

WvR
zondag 10 maart 2019

©2001-2024 WisFaq