Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Parabool en tweedegraadsvergelijking

Hoe kan ik uit de tekening van een parabool afleiden of a, b, c groter of kleiner dan 0 zijn? Bijvoorbeeld als de top van een dalparabool boven de x-as rechts staat. Wat is dan a, b, c?
Dank bij voorbaat

heirma
2de graad ASO - vrijdag 11 januari 2019

Antwoord

Bedenk dat je een kwadratische formule kunt schrijven in deze vorm:

y=a(x-p)2+q

Lees de coördinaten af van de top: de x-coördinaat van de top is p, de y-coördinaat van de top is q.

Haakjes wegwerken levert:

y=ax2 - 2ap·x + (ap2+q)

(Controleer zelf of dit klopt!)

Ofwel:
a=a
b=-2ap
c=ap2+q

Dan kunnen we de volgende conclusies trekken:
  • Bij een dalparabool: a$>$0,
    bij een bergparabool: a$<$0.
  • Als teken van a en p gelijk: b$<$0,
    als teken van a en p ongelijk: b$>$0.
  • Als ap2+q$>$0: c$>$0,
    als ap2+q$<$0: c$<$0
Voor jouw voorbeeld wordt dit:
Dalparabool, dus: a$>$0
Top rechts boven de x-as, dus p$>$0. Omdat a$>$0: tekens van a en p zijn gelijk, dus b$<$0.
Top boven de x-as, dus q$>$0. Omdat a$>$0 is zeker ap2+q$>$0, dus c$>$0.

GHvD
vrijdag 11 januari 2019

©2001-2024 WisFaq