Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bepalen verticale asymptoot of perforatie bij irrationale functie

Bij rationale functies gelden volgende regels bij nulpunten van teller en noemer: als een nulpunt een gelijke of hogere multipliciteit heeft in de teller dan in de noemer, dan heb je een perforatie. Als een nulpunt een hogere multipliciteit heeft in de noemer dan in de teller, dan is er een verticale asymptoot.

Maar wat is de uitleg bij irrationale functies?

Bijvoorbeeld f(x)= √((x2-5x+6)/(x-2)). In de teller en noemer hebben we nulpunt 2. In de noemer heeft deze multipliciteit 1. Maar in de teller staat er een wortel. Wat gebeurt er dan met de multipliciteit van dat nulpunt in de teller? Grafisch zie ik dat er een verticale asymptoot is voor x=2. Kunnen jullie dit uitleggen? Hoe moet ik hier redeneren?

Alvast bedankt.
Pandolien.

Pandol
3de graad ASO - woensdag 12 december 2018

Antwoord

Je kunt de (x-2) uit de noemer onder het wortelteken brengen. Je krijgt dan:

$\displaystyle \sqrt{\frac{(x-2)(x-3)}{(x-2)^2}}= \sqrt{\frac{x-3}{x-2}}$ als $x>2$.

Voor $x<2$ geldt $x-2=-\sqrt{(x-2)^2}$. Dit levert iets soortgelijks op.

Helpt dat?

hk
woensdag 12 december 2018

©2001-2024 WisFaq