Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Een goniometrische vergelijking oplossen

Ik doe ergens wat fout maar weet niet wat:

sin(x+(1/6)$\pi$)=cosx
cos($\pi$/2-(x+(1/6)$\pi$)=cosx
1/3$\pi$=2x
x=(1/6)$\pi$+2K$\pi$ V x=-(1/6)$\pi$+2K$\pi$

mboudd
Leerling mbo - zondag 18 november 2018

Antwoord

Na 'wegwerken' van cos krijg je:

2x = 1/3$\pi$ + 2k$\pi$ V 2x = -1/3$\pi$ + 2k$\pi$

Pas hierna herleiden tot x=...., waarbij je niet moet vergeten om bij het uitvoeren van een deling ook je term 2k$\pi$ te delen. Dit is iets anders dan eerst de vergelijking 2x=1/3$\pi$ op te lossen en achteraf '+2k$\pi$' aan je oplossing te plakken.

GHvD
zondag 18 november 2018

©2001-2024 WisFaq