Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Twee getallen zoeken

Het verschil van 2 positieve getallen is 7. Als je bij hun product 2 optelt, krijg je 100. Welke zijn deze getallen?

Pr
Ouder - woensdag 24 oktober 2018

Antwoord

Je hyperlink suggereert dat je een oplossing kunt/wilt vinden door het oplossen van een tweedegraadsvergelijking. Met $m$ en $n$ kan je een stelsel van vergelijkingen opstellen en dat stelsel oplossen. Je krijgt dan zoiets als:

$
\begin{array}{l}
\left\{ \begin{array}{l}
m - n = 7 \\
m \cdot n + 2 = 100 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
m = n + 7 \\
m \cdot n + 2 = 100 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
m = n + 7 \\
\left( {n + 7} \right) \cdot n + 2 = 100 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
m = n + 7 \\
n^2 + 7n + 2 = 100 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
m = n + 7 \\
n^2 + 7n - 98 = 0 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
m = n + 7 \\
\left( {n + 14} \right)(n - 7) = 0 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
m = n + 7 \\
n + 14 = 0 \\
\end{array} \right. \vee \left\{ \begin{array}{l}
m = n + 7 \\
n - 7 = 0 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
m = n + 7 \\
n = - 14 \\
\end{array} \right.(v.n.) \vee \left\{ \begin{array}{l}
m = n + 7 \\
n = 7 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
m = 14 \\
n = 7 \\
\end{array} \right. \\
\end{array}
$

Dat kan...

Maar 't zou zonder vergelijkingen ook nog wel gaan. Een product van twee getallen is 98 en 't verschil is 7:

1·98 = 98
2·49 = 98
7·14 = 98

Zoek de twee getallen die 7 verschillen.

WvR
donderdag 25 oktober 2018

©2001-2024 WisFaq