Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Maximale baansnelheid

Hallo,

Ik moet de maximale baansnelheid uitrekenen van de volgende parametervoorstelling:

x = -2cos(2t)
y = cos(4t)

Ik zou graag willen weten of ik het juist gedaan heb. Bovendien weet ik niet hoe ik aan het maximum kom

Eerst moet ik ze differentiëren, dat wordt:

x' = 4sin(2t)
y' =-4sin(4t)

Dan de afgeleiden kwadrateren onder de wortel (formule baansnelheid)

Maar dan geraak ik niet van de t's af (volgens mij) en ik moet een antwoord geven in de vorm van een coördinaat.

Henry
Student Hoger Onderwijs België - donderdag 3 mei 2018

Antwoord

Voor welke waarde(n) van $t$ is de baansnelheid maximaal? Vul die waarde(n) voor $t$ in in:

x = -2cos(2t)
y = cos(4t)

...en je weet de bijbehorende coördinaten.
Helpt dat?

WvR
donderdag 3 mei 2018

 Re: Maximale baansnelheid 

©2001-2024 WisFaq