Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Loodrechte projectie

Geachte heer,

Ik probeer bij een loodrechte projectie op een lijn e afbeeldingsmatrix te bepalen, alsook de variabelen a en b die in de lijn zitten, waarop een loodrechte projectie wordt uitgevoerd.

Echter kom ik vast te zitten, doordat ik de variabelen a en b niet kan bepalen, waarna de projectiematrix moet worden uitgerekend.

Bijvoorbaat dank ik u voor uw medewerking, ook doe ik u een screenshot toekomen van mijn berekening,

Radjan.

Radjan
Ouder - donderdag 19 april 2018

Antwoord

Ten eerste: een lijn in de ruimte heeft niet één normaalvector maar vele, ook de vector $(0,1,0)^T$ staat loodrecht op $\ell$, en verder alle lineaire combinaties van de twee die we nu al hebben.

Het probleem is als volgt op te lossen: $P'-P$ moet loodrecht op $\ell$ staan, dus moet $(1,1,1)^T$ loodrecht staan op $(b,0,-1)^T$; dat leidt snel tot $b=1$.

Daarnaast moet $P'$ op $\ell$ liggen, dus moet $a$ (en ook $\lambda$ zo bepaald worden dat $a+\lambda=3$, $1=1$, $0-\lambda=-1$. Dat is verder snel op te lossen.

kphart
donderdag 19 april 2018

©2001-2024 WisFaq