Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 5631 

Re: Bij de standaarddeviatie delen door n-1?

Waarom geldt die redenering niet evengoed voor de (eindige) populatie zelf met aantal N. Daar kan je toch ook zeggen dat er slechts N-1 waardes xi-mux onafhankelijk zijn, want ook daar is de som van de N xi - mux waardes gelijk aan 0.

follen
Iets anders - maandag 18 december 2017

Antwoord

Het punt is dat je de variantie van de steekproef wilt gebruiken als schatter van de variantie van de populatie. Het gemiddelde van de steekproef is meestal niet gelijk aan het gemiddelde van de populatie. Daarom zit de steekproefvariantie stelselmatig naast de populatievariantie.

Dat delen door $n-1$ in plaats van $n$ geeft een verbetering van de schatting.

Als je de hele populatie als steekrpoef hebt heb je dat probleem niet.

Zie Wikipedia: Bessel's Correction

kphart
maandag 18 december 2017

 Re: Re: Bij de standaarddeviatie delen door n-1? 

©2001-2024 WisFaq