Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Substitutiemethode

Goedendag,

Een kleine toevoeging op mijn vorige vraag. Ik denk dat het bij mij vooral misloopt bij het toepassen van de kettingregel. Zo loop ik bij de volgende opdracht ook hier vast:

·ondergrens van de integraal is het getal ervoor , bovengrens erna

0$\int{}$1 2x/√1+x2dx

u(x) = 1+x2
u'(x)= 2x = du/dx = 2x
du=2xdx

0$\int{}$1 du/√u
0$\int{}$1 1/√udu
0$\int{}$1 u-1/2du

Tot hier snap ik het. Ik heb nog een stap verder opgeschreven, maar ik weet niet of dit klopt en wat de stap precies doet, kunnen jullie me hiermee verder helpen?

0$\int{}$1 -2u-1/2

Bo
Student universiteit - donderdag 14 december 2017

Antwoord

De $u$-grenzen moet je wel aanpassen: als $x$ van $0$ tot $1$ gaat dan loopt $u$ van $1$ tot $2$.
Verder is je substitutie in orde, op je laatste stap na, waar komt die $-2$ vandaan?

kphart
donderdag 14 december 2017

©2001-2024 WisFaq