Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Homogene differentiaalvergelijkingen

Hoe moet ik nu verder:

(y^3 - 2xy^2)dx + x^3 dy =0

stel: y=tx en dy=tdx+xdt

(t^3x^3-2xt^2x^2)dx + x^3(tdx+xdt)=0
(t^3-2xt^2x^2+x^3t)dx=-x^4dt
x^3(t^3-2t^2+t)dx=-x^4dt
-1/xdx=1/(t^3-2t^2+t)dt
dan volgens mij:
1/(t^3-2t^2+t)= A/t + B/(t-1)+C/(t-1)

Maar hoe moet ik nu verder om op het antwoord:
x/(y-x)+c=ln[xy/(y-x)] te komen? Want ik kom hier helemaal niet uit.



BS
Student hbo - woensdag 12 maart 2003

Antwoord

.......-1/xdx=1/(t3-2t2+t)dt
Dit klopt in ieder geval (ik heb het nagerekend)

......dan volgens mij: 1/(t3-2t2+t)= A/t + B/(t-1)+C/(t-1)
En dat klopt dus niet, die breuksplitsing werkt anders omdat er een (t-1)2 onder de streep staat:
In dat geval moet je de volgende breuksplitsing toepassen:
1/(t3-2t2+t)= 1/(t·(t-1)2)= A/t + B/(t-1)+ C/(t-1)2

Dan kun je wellicht zelf ook uitrekenen dat daaruit komt A=1, B=1 en C=3.
Dit zet je vast weer op het juiste spoor. Dan is het nog wel een gepuzzel om op je antwoord uit te komen (ik heb dat niet meer geprobeerd)

Suc6

Met vriendelijke groet

JaDeX

jadex
donderdag 13 maart 2003

©2001-2024 WisFaq