To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
Loading jsMath...



Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

De arbelos

Hallo

voor een werkstuk over de arbelos moeten we een 20-tal bewijzen oplossen. Maar bij het volgende bewijs loopt alles vast:

gegeven: arbelos: grote cirkel op AB
kleine cirkels op AC en CB
loodrechte op AB in C snijdt de grote
cirkel (de cirkel op AB dus) in D.
snijpunt van AD met cirkel op AC: X
snijpunt van BD met cirkel op BC: Y

Te Bewijzen: XY raakt aan de cirkels op AC en CB

Bewijs: ???????? Kunnen jullie helpen? Wat ik
hieromtrent al wel bewezen heb is:
-CXDY zijn concyclisch
-CXDY is een rechthoek
-CD en XY snijden elkaar middendoor.

THX,
Inge

Inge
2de graad ASO - woensdag 12 maart 2003

Antwoord

Beste Inge,

Laat M het midden/snijpunt van CD en XY zijn. Dan is MC een raaklijn aan beide cirkels op AC en CB.

----

Je moet je nu de volgende algemeenheden realizeren:

Vanuit een punt P buiten een cirkel C met middelpunt O zijn twee raaklijnen aan C. De afstanden van P tot de twee raakpunten R1,2 zijn gelijk - R1,2 zijn namelijk gespiegeld in PO.
Er zijn hoogstens twee punten op een gegeven afstand van een punt P op een cirkel C - je snijdt immers twee cirkels.

----

Okay, we hadden dat MC een raaklijn is aan de cirkel op AC. Ook weten we (had je reeds ontdekt) dat X op deze cirkel ligt en dat MC en MX even lang zijn. Dus is MX ook een raaklijn aan deze cirkel!

Zie Arbelos

FvL
donderdag 13 maart 2003

©2001-2025 WisFaq