Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bewijs met behulp van gevalsonderscheid

Beste,

Er moet een bewijs worden gegeven (m.b.v. gevalsonderscheid) voor: |x + y| $\le$ |x| + | y|, waarbij je gebruik moet maken van -v $\le$ u $\le$ v als geldt |u| $\le$ v.

Dit is het gegeven antwoord van het correctiemodel:
1. Er geldt altijd |x| $\le$ |x| als x (en y) willekeurig zijn.
2. Vanwege "-v $\le$ u $\le$ v als geldt |u| $\le$ v", geldt dat −|x|$\le$x$\le$|x|.
3. Hetzelfde geldt dan ook voor y: −|y|$\le$ y$\le$|y|.
4. Vergelijking 2 en 3 optellen geeft: −|x|−|y|$\le$x+y$\le$|x|+|y|. Dit wordt met behulp van "-v $\le$ u $\le$ v als geldt |u| $\le$ v" herschreven als |x+y|$\le$||x|+|y||.
5. Omdat |x|+|y|$\ge$0 geldt ||x|+|y||=|x|+|y|.
6. Dus geldt er: |x+y|$\le$x|+|y|.

Ik snap het bewijs in zijn geheel niet en zou graag hulp willen. Alvast bedankt.

Groeten,

Arjan

Arjan
Student universiteit - vrijdag 14 april 2017

Antwoord

Je stappen zijn grotendeels correct; hier en daar kan het wat beter.
Wat je moet gebruiken is in feite een equivalentie: $|u|\le v$ geldt dan en slechts dan als $-v\le u\le v$ (dat volgt uit de definitie van $|x|$ als $\max\{-x,x\}$).
Stap 1: er geldt $x\le|x|$ en dus $-|x|\le x\le |x|$
Stap 2: er geldt $y\le|y|$ en dus $-|y|\le y\le|y|$
Stap 3: tel stappen 1 en 2 op: $-|x|-|y|\le x+y\le|x|+|y|$
Stap 4: haakjes: $-|x|-|y|=-(|x|+|y|)$
Stap 5: conclusie: $-(|x|+|y|)\le x+y\le|x|+|y|$
Stap 6: met $u=x+y$ en $v=|x|+|y|$ volgt nu uit stap 5 en de gegeven equivalentie dat $|x+y|\le|x|+|y|$.

Lees het bewijs een paar keer regel voor regel door en overtuig je ervan dat elke stap uit de vorige volgt.
Mijn ervaring is dat het soms een paar keer lezen kost om het echt te begrijpen.

kphart
vrijdag 14 april 2017

©2001-2024 WisFaq