Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 83911 

Re: Limiet 10

Hallo,

Alvast bedankt voor uw reactie.
Bljkbaar is er bij mijn 2de opgave het '$<$'-teken weggegaan.
Het is toch (x-2)/[(x-2)(x-2)] = 1/(x-2) =1/(2-2)). dus het de linkerlimiet is - en de rechterlimiet zou + zijn.

Deze situatie komt eigenlijk ook voor in de eerste opgave. (-2+2) = 0 dus is -2 toch een verticale asymptoot?

Of zit ik er helemaal naast?

Bedankt voor je advies

Ruud
Iets anders - donderdag 23 februari 2017

Antwoord

Nee, je zit er niet naast.

Ik schreef "pas op" omdat 1/0 niet echt een antwoord is, maar ook omdat je schreef dat (x-2)/(x-2)(x-2) gelijk is aan "1/0" - maar die is nog "0/0"! De tussenstap naar 1/(x-2) is wel fundamenteel :). Maar dat had je wel gezien.

Groet,

FvL
donderdag 23 februari 2017

 Re: Re: Limiet 10 

©2001-2024 WisFaq