Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Cauchy Riemann vergelijkingen

Waarom mag al gesproken worden van f(z) is differentieerbaar op z als f(z) voldoet aan de Cauchy Riemann vergelijkingen? Bij de Cauchy Riemann vergelijkingen laat je delta z alleen horizontaal en verticaal 0 naderen en niet via de andere richtingen.

Karel
Leerling bovenbouw havo-vwo - zaterdag 5 november 2016

Antwoord

Dat gebeurt ook niet: $f(z)$ is complex differentieerbaar in een punt dan en slechts dan als $f$ daar reëel differentieer is (als functie van $\mathbb{R}^2$ naar zichzelf) èn bovendien de Cauchy-Riemannvergelijking daar gelden.

Zie Wikipedia: Cauchy-Riemann equations

kphart
zaterdag 5 november 2016

©2001-2024 WisFaq