Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Taylorreeks

Hallo

Hoe kan de som (6x)/(x+1)2 + 2/(x+1)2 door middel van een taylorreeks omgeschreven worden tot een expliciet? Je zou de binomiale expansie kunnen toepassen, maar ik kom er dan niet uit.

Wat is dan de eindoplossing?

Groetjes

Lau
Leerling bovenbouw havo-vwo - dinsdag 18 oktober 2016

Antwoord

Je kunt gebruiken dat $1/(x+1)^2$ de afgeleide is van $-1/(x+1)$. Verder geldt
$$
\frac1{1+x}=\sum_{n=0}^\infty(-x)^n
$$
zo kun je door differentiëren zien dat
$$
\frac1{(1+x)^2} = \sum_{n=0}^\infty (-1)^n(n+1)x^n
$$
Nu ben je er bijna.

kphart
dinsdag 18 oktober 2016

 Re: Taylorreeks 

©2001-2024 WisFaq