Dan gaat er toch iets mis in het rekenwerk, immers: $$\int_k^2 x^3-4x \,\mbox{d}x = \left[ \frac{x^4}{4} - 2x^2 \right]_k^2$$Nu de grenzen invullen en vereenvoudigen levert: $$(4-8)-\left(\tfrac{k^4}{4}-2k^2\right)=-\tfrac{k^4}{4}+2k^2-4$$Om hiervan de nulpunten te vinden kan je $t=k^2$ stellen om een kwadratische vergelijking in $t$ te krijgen, of opmerken dat: $$-\tfrac{k^4}{4}+2k^2-4 = -\tfrac{1}{4}\left(k^2-4\right)^2$$De nulpunten zijn dan duidelijk.
Opm: als je de meetkundige betekenis van de integraal kent en opmerkt dat $f(x)=x^3-4x$ een oneven functie is, had je deze oplossing misschien ook kunnen 'voorspellen' of 'beredeneren'.