Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Formule om het aantal kubusjes te berekenen

Er geldt n=c*k^d
In deze formule is n het aantal kubusjes voor overdekking, k de verkleiningsfactor en d de dimensie.
De formule omgewerkt ziet er als volgt uit:

log n= log c + d*log k
d= (log n - log c)/(log k)
d= (log n)/(log k) - (log c)/(log k)
Tot zover ben ik tot nu toe gekomen, maar dan nu het volgende:
Als de kubus 'ineenschrompelt' wordt de factor k en dus ook log k steeds groter.
Hoe moet ik nu beredeneren dat de formule overgaat in
d= log n / log k ?

Jeffre
Leerling bovenbouw havo-vwo - vrijdag 7 maart 2003

Antwoord

c is een of ander vast getal, dus log(c) ook. De noemer log(k) wordt steeds maar groter, terwijl de teller dus niet meegroeit. En als je een vast getal alsmaar blijft delen door een steeds groter getal, dan wordt de waarde van die breuk steeds meer gelijk aan 0.
Voor de eerste breuk kun je dit verhaal niet nogmaals houden, want daar verandert de teller log(n) óók.

MBL
vrijdag 7 maart 2003

©2001-2024 WisFaq