Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Afgeleiden bewijs

Hallo
Ik vraag me af hoe je een algemeen bewijs geeft om aan te tonen dat een niet nader gespecifieerde functie afleidbaar is.
Zo staat er een voorbeeld in mijn cursus:
Veronderstel dat f: I Í R $\to$ R+0 en g: IÍR $\to$ R afleidbare functies zijn gedefinieerd op een open interval I. Beschouw de functie h: I Í R $\to$ R+0 gegeven door h(x) = f(x)^g(x) voor x$\in$I
Toon nauwkeurig aan dat h afleidbaar is op I. Stel op het einde van je bewijs een formule op die h' uitdrukt in termen van de afgeleiden van f en g.

Ik heb een beetje zitten puzzelen, maar kom er niet echt aan uit. Moet ik de kettingregel toepassen of andere rekenregels samenvoegen?
Alvast bedankt!
Met vriendelijke groeten
Julie

Julie
Student universiteit België - maandag 28 december 2015

Antwoord

Herschrijf $f(x)^{g(x)}$ tot $e^{g(x)\ln f(x)}$ en pas bekende regels als de product- en kettingregel toe.

kphart
maandag 28 december 2015

©2001-2024 WisFaq