Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Functievoorschrift van een parabool

Ik heb het onderwerp "Functievoorschrift opstellen van een parabool" reeds bekeken en ik vind het zeer logisch als de parabool door nulpunten gaat om C te berekenen.
De oefening die ik heb is als volgt:
De tweedegraadsfunctie gaat door de punten (1,1),(2,1),(3,9).

Wanneer ik de punten invul bekom ik dus:
1 = a(1)2+b(1)+c
1 = a(2)2+b(2)+c
9 = a(3)2+b(3)+c

Hoe kan ik berekenen wat de A, B en C is zonder dat er nulpunten gegeven worden?

MVG
Iets anders - zondag 15 november 2015

Antwoord

Je hebt een mooi stelsel van drie vergelijkingen met drie onbekenden (a, b en c) bekomen.

a + b + c = 1 (v1)
4a + 2b + c = 1 (v2)
9a + 3b + c = 9 (v3)

Je kunt dit oplossen door (v2) - (v1) en (v3) - (v2) te berekenen.
Je bekomt dan een stelsel van 2 vergelijkingen met 2 onbekenden (a en b)

3a + b = 0 (v4)
5a + b = 8 (v5)

Bereken nu (v5) - (v4) en je bekomt

2a = 8 of
a = 4

Vul deze waarde van a in in (v4) of (v5) en je bekomt

b = -12

Vul de waarden van a en b in in (v1) en je bekomt

c = 9

Dus de vergelijking wordt

f(x) = 4x2 -12x + 9 = (2x - 3)2

Je zult vinden dat deze functie maar 1 nulpunt heeft, nl. x = 3/2

Dit is een algemene methode die je altijd kunt gebruiken.

In dit specifiek geval kun je ook gebruik maken van het feit dat de punten (1,1) en (2,1) symmetrisch liggen t.o.v. de rechte x = 3/2

De vergelijking van de symmetrie-as is x = -b/2a en dat wordt hier : x = 3/2, waaruit b = -3a

Vul dit in in (v3) en je bekomt c = 9
Vul b = -3a en c = 9 in in (v1) en je vindt a, en dus ook b

Ok?

LL
zondag 15 november 2015

©2001-2024 WisFaq