Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Continuïteit van een functie

Beste,

Geef een functie die in n-punten continue is, waarbij n natuurlijke getallen moeten zijn?

Ik weet dat deze functie "vloeiend" moet zijn en geen onderbrekeningen mag hebben. Hierbij moeten het natuurlijke getallen zijn. Hierbij dacht ik aan een trapfunctie, maar weet het niet zeker?

Alvast bedankt!

Kevin
Student Hoger Onderwijs België - vrijdag 8 mei 2015

Antwoord

De functie $f$, gegeven door $f(x)=x$ als $x\in\mathbb{Q}$ en $f(x)=0$ als $x\notin\mathbb{Q}$ is inderdaad alleen in het punt $0$ continu. Als je het bewijs daarvan doorhebt kun je van de volgende functie aantonen dat hij alleen continu is in de gegeven punten $t_1$, $t_2$, ..., $t_n$: maak eerst het polynoom $p(x)=(x-t_1)(x-t_2)\cdots(x-t_n)$ en definieer $f(x)=p(x)$ als $x\in\mathbb{Q}$ en $f(x)=0$ als $x\notin\mathbb{Q}$.

kphart
zondag 10 mei 2015

©2001-2024 WisFaq