Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 75219 

Re: Bepaal de waarden van A kleiner dan 180 gr

Het is een interessante opgave. De antwoorden in mijn boek
zijn a= 90 gr( cos(a) =0 en 45 gr je zou kunnen zeggen
cos(2a) =0 a= 45 gr

verder uitwerken van het vraagstuk geeft:
1+sin(2a) = 2-8(sin(2a))2 +8(sin(2a))4
stel sin(2a) =x

8)x)4+o(x)3-8(x)2-(x)+1 (1=wortel vd polynoom)

mbv Horner blijft na deling

8(x)3+8(x)2+0(x)-1

deze polynoom heeft geen wortel ,hier uit geen oplossing
voor 45 gr

het doet mij plezier voor de reacties van het team
groet yoep

yoep
Ouder - woensdag 25 maart 2015

Antwoord

We hadden cos(A) = 0 of 2cos(4A) + √(2) · (cos(A) + sin(A)) = 0
Uit cos(A) = 0 volgt de oplossing A = 90°.

Dan: √(2) · (cos(A) + sin(A)) = -2cos(4A) = -2(1 - 2sin2(2A))
Kwadrateren geeft dan:
2(1 + sin(2A)) = 4(1 - 4sin2(2A) + 4sin4(2A)) wat met X = sin(2A) neerkomt op 2(1 + X) = 4(1 - 4X2 + 4X4).

Herleiden geeft dan 8X 4 - 8X2 - X + 1 = 0
Deze vergelijking heeft de oplossingen X = -1/2 of X = 1
of x = 1/4(-1 ± √(5))

Deze waarden leveren dan via X = sin(2A) de bijpassende A-waarden op.
Zo geeft bijv. sin(2A) = 1 de waarde 45°

Nog twee opmerkingen:
1) Omdat er op enig moment gekwadrateerd wordt, is het nodig de oplossingen die ten slotte gevonden worden, te controleren óf je moet vóór het kwadrateren voorwaarden stellen. Hoe dan ook, kwadrateren kan valse oplossingen opleveren.
2) Ik vind het een enigszins overspannen opgave waarbij het vreemd overkomt dat er kennelijk nog in graden gedacht wordt. Je zou met dit kaliber opgave eerder aan radialen denken.

MBL
woensdag 25 maart 2015

©2001-2024 WisFaq