Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Borelverzamelingen

Hallo,

Zou je me kunnen helpen hoe je moet aantonen dat volgende verzameling een Borelverzameling is?

{x is een element van de complexe getallen | er bestaat een niet-nul veelterm p met coëfficienten in de gehele getallen zodat p(x)=0}

Ik ben er reeds in geslaagd om bij andere verzamelingen aan te tonen dat ze een borelverzameling zijn, maar dit meestal door te tonen dat ze aftelbaar waren... Bij deze verzameling zie ik niet in hoe eraan te beginnen..

Alvast bedankt

Jolien
Student universiteit - donderdag 23 oktober 2014

Antwoord

Deze verzameling is ook aftelbaar; dat is in 1874 door Cantor en Dedekind bewezen. Zie de link (een kort bewijs: het aantal polynomen met gehele coefficienten is aftelbaar en elk heeft maar eindig veel nulpunten).

Zie Artikel van Cantor

kphart
donderdag 23 oktober 2014

©2001-2024 WisFaq