Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Oplossen logaritmische vergelijking

Hoi,

In een werkcollege is e.e.a. uitgelegd over logaritmische en exp. functies en het oplossen ervan. Nu ben ik bezig met oefenopgaven en deze begrijp ik maar voor een deel:

2 ln x - ln(x + 1) = 1

Dit kun je herschrijven naar: x2 / (x+1) = e

Vanaf daar begrijp ik het niet meer.

Het antwoord: X = e + √e2 +4e/2

kasper
Student universiteit België - zondag 5 oktober 2014

Antwoord

Zoiets kan met kwadraatafsplitsen:

$
\begin{array}{l}
\frac{{x^2 }}{{x + 1}} = e \\
x^2 = ex + e \\
x{}^2 - ex - e = 0 \\
\left( {x - \frac{1}{2}e} \right)^2 - \frac{1}{4}e^2 - e = 0 \\
\left( {x - \frac{1}{2}e} \right)^2 = \frac{1}{4}e^2 + e \\
x - \frac{1}{2}e = \pm \sqrt {\frac{1}{4}e^2 + e} \\
x = \frac{1}{2}e \pm \sqrt {\frac{1}{4}e^2 + e} \\
x = \frac{1}{2}e \pm \frac{1}{2}\sqrt {e^2 + 4e} \\
\end{array}
$
Bedenk hierbij dat alleen $
x = \frac{1}{2}e + \sqrt {\frac{1}{4}e^2 + e}
$ voldoet.

WvR
zondag 5 oktober 2014

©2001-2024 WisFaq