Ik dacht dat je deze functie verder moest ontbinden, net zoals een limiet waarbij je na invulling '0/0' uitkomt. Voor alle duidelijkheid. Indien je oefeningen hebt met een limiet naar een bepaalde waarde. Je komt 'x/0' mag je er vanuit gaan dat de limiet niet bestaat (naar oneindig). Echter '0/0' moet je altijd verder uitwerken? Klopt dit?
Sebast
3de graad ASO - woensdag 18 juni 2014
Antwoord
Bij gebroken functies zijn er, kijkend naar teller en noemer 4 gevallen te onderscheiden
1. teller en noemer niet nul $\to$ uitrekenen 2. teller nul en de noemer niet nul $\to$ limiet is nul 3. teller niet nul en de noemer nul $\to$ limiet bestaat niet (-$\infty$ of +$\infty$) 4. teller nul en de noemer nul $\to$ nadere beschouwing noodzakelijk