Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Vergelijking opstellen van een evenwijdig vlak

Gegeven: A(-1,-1,-1); B(-1,0,0); C(1,-2,0); D(1,2,2)
Gevraagd: Stel een vergelijking op van een vlak dat evenwijdig is met vl(A,B,C) en dat op een afstand 2 van het punt D ligt.

Ik dacht met behulp van de afstandsformule, dat ik de punten kon vinden, want de afstand is gegeven en de normaalvector is hetzelfde in het evenwijdige vlak, maar ik geraak niet verder...

JN
3de graad ASO - zondag 8 juni 2014

Antwoord

Beste,

Het voorschrift voor het vl(A,B,C) is 2x+2y-2z=-2
Ik neem aan dat je dit kunt vinden.

Dit betekent dat een vlak hieraan evenwijdig het volgende voorschrift heeft.
2x+2y-2z=d

Je weet dat de kortste afstand van punt D tot het vlak 2 moet zijn.
Vul alles in in de afstandsformule en filter d uit.

$
2 = \frac{{\left| {2 - d} \right|}}{{\sqrt {12} }}
$

mvg DvL

DvL
zondag 8 juni 2014

©2001-2024 WisFaq