Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Het betreft 4 curves waarvan de eindpunen bekend zijn...

Ik weet voor all punten A$\to$D op de hoeken de waarde van dy/dx voor elke curve.
Currve length S1=S2=S3=S4=L
S1 =[Integraal ds] van x1= $\to$ x=L/2 en y=0 $\to$ y=L/2
ds=(1+(dy1/dx1)2))0,5·dx. . .Integratie limieten zijn vanuit de symmetry duidelijk vast te stellen maar verder kom ik niet. Ik kan de ds Differentuiaal niet intgreren in deze form en ook niet anders opschrijven. Hoe kan ik dF1/dx1 en dF2/dx2 linken als functies van x om de integratie uit te voeren?

Conrad
Iets anders - zaterdag 5 april 2014

Antwoord

Het probleem is bekend als het muizenprobleem.

In 't Engels:Of in 't Nederlands:Opgelost?

WvR
woensdag 9 april 2014

©2001-2024 WisFaq