Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Gereduceerde differentiaalvergelijking

Ik ben hier aan bezig geweest nu zit ik vast bij de hier onder gegegeven DV, zou iemand mij kunnen helpen?

1: y'+a·y=a·b·exp(-a·t)

de oorsprong hiervan was:

2: dc/dt + c·a = a·b·exp(-a·t)

Ik hoop dat iemand 1 voor mij kan oplossen,
ik heb voor twee ook nog de grenzen maar ik wil eerst de eerste begrijpen.

mvg
Mohamed

mohame
Student hbo - dinsdag 4 maart 2014

Antwoord

Beste Mohamed,

De oplossing van de homogene differentiaalvergelijking
$$y'(t)+ay(t) = 0$$wordt gegeven door $y=ce^{-at}$. Stel als particuliere oplossing een oplossing voor van de vorm $y_p = Cte^{-at}$ met extra factor t omdat het voorstel zonder deze factor reeds in de homogene oplossing vervat zit. Substitutie van $y_p$ levert $C=ab$ zodat de volledige oplossing volgt:
$$y = ce^{-at}+abte^{-at}$$
mvg,
Tom

td
woensdag 5 maart 2014

©2001-2024 WisFaq