Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Primitieveren xarctanx

Voor het vak Analyse 1 moet ik de integraal
òxarctanx dx uitrekenen die loopt van 0 tot Ö3

Nu weet ik wel wat de oplossing van òarctanx dx is, namelijk:
òarctanx dx =[x·arctan(x)] - òx·1/(1+x2) dx
= [x·arctan(x) - 1/2ln(1+x2)]

Maar nu weet ik eigenlijk niet waar het tweede gedeelte vandaan komt, dus; (1/2ln(1+x2)

En daarom lukt het me denk ik ook niet om òxarctanx dx op te lossen. Kan iemand me helpen?

Marijk
Student universiteit - vrijdag 13 december 2013

Antwoord

Misschien is het het simpelst om dat tweede stuk te differentiëren en te zien dat het klopt.

MBL
vrijdag 13 december 2013

©2001-2024 WisFaq