Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Moeilijke integraal

Hallo,

Ik had een opdracht maar kom niet helemaal uit een integraal.

Namelijk : (x5)/(3√(1+x3))

Deze heb ik vereenvoudigd 1/3√(1+x3)) · x5.

Deze wil ik eigenlijk vaker partiël integreren zodat ik de x5 weg kan werken. Echter lukt mij dit niet omdat bij de andere substitutie de dx niet kan vervangen door du door een machtsuitkomst. Als ik hem andersom wil partiël wil integreren worden me machten alleen maar hoger.

Weten jullie een oplossings route die wel zou lukken. Ik zou hier zeer dankbaar voor zijn

Groet,

Sander

sander
Student hbo - donderdag 12 december 2013

Antwoord

Je wilt $\int{}$x5/3√(x3+1)dx bepalen.
Kies nu als substitutie: u=x3+1 en du=3x2dx
dan wordt de integraal na deze substitutie:

1/3$\int{}$(u-1)du/3√u
immers:1/3(u-1)du=1/3(x3+1-1)·3x2dx=x5dx

hk
donderdag 12 december 2013

©2001-2024 WisFaq