Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 71471 

Re: Opstellen van differentiaalvergelijking

Dag Gilbert,
Mag ik nu schrijven :780y""-13y'=0
Er is geen tweede lid.
Kenmerkende vergelijking :
780r2-13r=0
^met r=0 en r= 13/780 Oplossing:
Y=C(1)e^0+C(2)e^13/780
Y=C(1)+C(2)e^13/780
Er zijn geen verdere voorwaarden voor het vinden van de constanten C(1) en C(2) gegeven.

Is dit correct ??
Groetjes ,
RIk

Rik Le
Iets anders - vrijdag 22 november 2013

Antwoord

Beste Rik,

Enkele puntjes op de i:
Het min-teken in jouw differentiaalvergelijking is onjuist. Als het goed is, kom je uit op:
780y''+13y'=0.

Dit is te vereenvoudigen tot:
60y''+y'=0.

De oplossing wordt dan:

y(t)=C1+C2e-(1/60)t
(dus met min-teken en variabele t in de exponent)

Ook geldt:
y'(t)=-(1/60)C2×e-(1/60)t

Hierin zijn y(t) de positie van de boot en y'(t) de snelheid van de boot.

C2 volgt uit de randvoorwaarde dat y'(0)=7.

C1 is de positie waar de boot uiteindelijk tot stilstand komt. Immers: als t naar oneindig gaat, dan nadert y(t) tot C1. Het nulpunt voor de plaats y is niet voorgeschreven, dus C1 is in principe vrij te kiezen. Een logische keuze voor dit nulpunt zou natuurlijk zijn de positie van de boot op het moment dat de motor uitvalt.

GHvD
vrijdag 22 november 2013

©2001-2024 WisFaq