Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Goniometrische vergelijkingen herleidbaar tot basisvergelijkingen

Hey people, ik zit vast bij een oefske Can someone help me pleaseeeeeee? Leerkracht heeft ons een oefening gegeven die echt moeilijk is en ik kan er niet uit! Ik krijg altijd een andere uitkomst dan wat er op de achterkant vh HB staat

Voor een bapaalde stad worden de gemiddelde dagtemperaturen gegeven door het verband Q= 20sin(2pi/365)(t-120)+5 met Q in graden celsius en t in dagen , t is een element van (interval) (0,365)

Het groeiseizoen rond die stad bestaat uit de dagen met een gemiddelde dagtemperatuur van minstens 5 graden celsius

Bepaal het groeisezoen mbv een goniometrische ongelijkheid.

Marie
3de graad ASO - donderdag 7 november 2013

Antwoord

Er geldt:

$
\begin{array}{l}
20\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 120} \right)} \right) + 5 > 5 \\
20\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 120} \right)} \right) > 0 \\
\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 120} \right)} \right) > 0 \\
0 < \frac{{2\pi }}{{365}}\left( {t - 120} \right) < \pi \\
0 < \frac{2}{{365}}\left( {t - 120} \right) < 1 \\
0 < 2\left( {t - 120} \right) < 365 \\
0 < 2t - 240 < 365 \\
240 < 2t < 605 \\
120 < t < 302\frac{1}{2} \\
\end{array}
$

WvR
vrijdag 8 november 2013

©2001-2024 WisFaq