Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Berekening tweede lid van een som

Goede avond,
Ik zou het tweede lid van deze som willen berekenen

a+1
å(2/(k2-1))
k=2
Ik dacht:
k=2 geeft 2/3
k=3 geeft ,1/4
k=4 geeft 2/15.....
k=a+1 geeft 2/(a+1)2-1= 2/a2+2a
De reeks wordt dan
Som= 2/3+1/4+2/15+.....+2/a2+2a
Maar deze som moet aan "iets" gelijk zijn...
En dan kan ik het bewijs geven via inductie dat dit tweede lid klopt.(via enkele stappen waarvan ik voorbeelden vond in College Algebra.
Wie helpt mij op weg ?
Groeten,
Rik

Rik Le
Iets anders - zaterdag 5 oktober 2013

Antwoord

Hoi Rik,
Wat je schrijft klopt gewoon helemaal. Misschien helpt het als je zegt wat je eigenlijk wilt bewijzen? Misschien bedoel je het volgende.

$
\begin{array}{l}
\sum\limits_{k = 2}^{n + 1} {\frac{2}{{k^2 - 1}}} \\
\frac{2}{{k^2 - 1}} = \frac{A}{{k + 1}}.\frac{B}{{k - 1}} \Rightarrow Ak - A + Bk + B = 2 \\
k(A + B) + B - A = 2 \Rightarrow \\
\left\{ \begin{array}{l}
A + B = 0 \\
B - A = 2 \\
\end{array} \right\}A = - 1 \to B = 1 \\
\sum\limits_{k = 2}^{n + 1} {\frac{2}{{k^2 - 1}}} = \sum\limits_{k = 2}^{n + 1} {\frac{1}{{k - 1}} - \frac{1}{{k + 1}} = \sum\limits_{k = 2}^{n + 1} {\frac{1}{{k - 1}} - \sum\limits_{k = 2}^{n + 1} {\frac{1}{{k + 1}}} } } \\
\sum\limits_{k = 2}^{n + 1} {\frac{1}{{k - 1}} - \sum\limits_{k = 2}^{n + 1} {\frac{1}{{k + 1}}} } = 1 + \frac{1}{2} + \sum\limits_{k = 4}^{n + 1} {\frac{1}{{k - 1}} - \sum\limits_{k = 2}^{n + 1} {\frac{1}{{k + 1}}} } = \\
\frac{3}{2} - \frac{1}{{n + 1}} - \frac{1}{{n + 2}} = \frac{3}{2} - \left( {\frac{1}{{n + 1}} + \frac{1}{{n + 2}}} \right) = \frac{3}{2} - \frac{{2n + 3}}{{(n + 1)(n + 2)}} \\
\\
\end{array}
$

DvL
zaterdag 5 oktober 2013

 Re: Berekening tweede lid van een som 

©2001-2024 WisFaq