Een lijn p door het brandpunt F evenwijdig aan de richtlijn 1 van een parabool snijdt de parabool in de twee punten A en B. Bewijs dat de raaklijnen in A en B aan de parabool elkaar loodrecht snijden. Ik had zelf een tekening geschetst als eerste (weet niet ofdat het goed is) maar ik weet niet hoe ik een bewijs moet uitleggen hiervan, kunt u mij op weg helpen waar ik mee zou kunnen beginnen?
Yvette
Iets anders - zaterdag 27 juli 2013
Antwoord
Yvette, Neem parabool y2=4px met brandpunt F(p,0). De lijn x=p snijdt de parabool in A(p,2p)en B(p,-2p). Uit y2=4px volgt dat y'(x)=2p/y. Dus de raaklijn in A heeft als rico +1 en in B is de rico -1. Het product van de rico's is -1, hetgeen betekent dat de raaklijnen elkaar loodrecht snijden.