Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

sin(x)=1/5x

Graag zou ik willen weten of deze vergelijking:

sin(x) = 0.2x

exact op te lossen is en zoja; hoe?
Ik ben al een hele tijd bezig geweest hem op te lossen
maar het lukt me niet.

Met vriendelijke groet

Joost
Leerling bovenbouw havo-vwo - woensdag 29 januari 2003

Antwoord

Hoi,

Puur algebraïsch kom je er niet; deze vergelijking kan je enkel numerisch oplossen... Je zal dus een rij construeren waarbij de opeenvolgende termen betere benaderingen zijn van de oplossing van je vergelijking. Als je op deze site wat rondsnuffelt vind je zeker een aantal manieren. Eén ervan is de methode van Raphson-Newton. Hierbij snijden we de raaklijn in een punt met de X-as om zo een betere benadering te vinden.

We nemen f(x)=sin(x)-x/5 en zoeken een nul-punt van f(x).
Op een grafiek (y=sin(x) en y=x/5) kan je in ieder geval zien dat er precies 1 oplossing is (behalve de evidente x=0).

Je kan een goede eerste benadering vinden met behulp van een reeksontwikkeling voor sin(x).
sin(x)=x-x3/6+x5/120-...
We benaderen f(x)f*(x)=x-x3/6-x/5=x.(4/5)-x2/6)).
f*(x)=0 voor x=(24/5)=2.191.

x0=2.191
xn+1=xn-f(xn)/f'(xn)=xn-(sin(xn)-xn/5)/(cos(xn)-1/5)

Zo bereken je x1, x2, x3, ... Je zal zien dat x4 al 10 decimalen correct geeft: 2.59573907965

In de Numerieke Wiskunde bestudeert met dit soort benaderingsmethoden in detail.

Groetjes,
Johan

andros
woensdag 29 januari 2003

©2001-2024 WisFaq