Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 70610 

Re: Telproblemen principe van in- en exclusie

Uhm ik denk dat je gelijk hebt. maar het maakt ook nog uit wat ze krijgen he. PIetje krijgt de schaar en klaasje de kam, is niet hetzelfde als pietje de kam en klaasje de schaar. Maar in trent vna wat u zegt moet het zijn. Maar ik zou niet weten hoe verder dan? KUnt u het uitwerken voor me? Daarbij is het raar natuurlijk, dat als er aan teminste 2 condities is voldaan. Dat je als tussenstap volgens mij dan al het eindantwoord moet uitrekenen. namelijk A krijgt iets en B krijgt iets + etc en wat ze dan krijgen maakt ook nog uit en hoeveel. Ik snap niet hoe dit volgens dit principe precies moet.

dennis
Student hbo - donderdag 11 juli 2013

Antwoord

Kies twee personen en twee voorwerpen en geef die aan die twee personen, dat kan op $6\times{10\choose2}\times2$ manieren; vervolgens verdeel je de rest willekeurig over alle vier personen, dat kan op $4^8$ manieren (voor ieder voorwerp vier personen). Dan is $6\times{10\choose2}\times2\times4^8$ het aantal manieren om de voorwerpen zó te verdelen dat ten minste twee personen iets krijgen (er is aan ten minste twee condities voldaan).
Evenzo kun je tellen hoe vaak aan ten minste drie condities is voldaan: $4\times{10\choose3}\times3!\times4^7$, en aan vier condities: $1\times{10\choose4}\times4!\times4^6$.
Deze getallen kun je nu in de inclusie-exclusieformule stoppen.

kphart
zaterdag 13 juli 2013

©2001-2024 WisFaq