Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Lineaire afbeeldingen

Beste,

Zouden jullie mij aub zo snel mogelijk willen helpen met dit? Ik begrijp hier niets van....

"Beschouw de lineaire afbeelding

f: R3 -> R3: (x, y, z) |-> (-3x - 2y + 2z, -13x - 5y + 7z, -17x - 8y + 10z)

Schrijf de matrix van f t.o.v. de standaardbasis in R3. Vind ook matrix van f t.o.v. de basis {(1, -1, 1), (1, 2, 3), (0, 1, 1)}."

Hoe doe je dit?

Ilke V
3de graad ASO - woensdag 5 juni 2013

Antwoord

In je matrix komen kolomsgewijs de beelden te staan van de drie basisvectoren.
Kijk dus wat (1,0,0) en (0,1,0) en (0,0,1) 'doen' onder invloed van f.
Vul dus gewoon de x, y en z in.
Dan wordt bijv. (1,0,0) de vector (-3,-13,-17) waarmee kolom 1 er is.
Daarna doe je hetzelfde met de twee andere basisvectoren.

MBL
woensdag 5 juni 2013

©2001-2024 WisFaq