We moesten m bepalen zodat f(x)=x2/(x+m) een relatief minimum bereikt in x=4. De afgeleide is f'(x)= (x2+2mx)/(x+m)2 en die zou nul moeten zijn voor x=4 en het teken moet er wisselen. Ik heb x=4 ingevuld en een tekentabel van f'(m)=(16+8m)/(4+m)2 opgesteld. Dit geeft een minimum voor f(m) bij m=-2. Deze oplossing voor m is juist, maar volgens mijn leerkracht redeneer ik fout. Ik begrijp wel dat f(x) en f(m) niet dezelfde functies zijn, maar dat maakt toch niets uit? Met mijn redenering vind ik toch ook altijd wel de juiste oplossing of niet?
OPA
3de graad ASO - vrijdag 3 mei 2013
Antwoord
Een functie kan best van teken wisselen zonder dat dit in een nulpunt gebeurt. Neem maar f(x) = 1/x. Bij x= 0 treedt tekenwisseling op terwijl f(0) niet eens bestaat! In jouw geval zul je f'(4) = 0 moeten oplossen hetgeen m = -2 oplevert en daarna nog even controleren of je voor deze m inderdaad een minimum krijgt. Die controle is nodig omdat je voor een maximum precies dezelfde weg zou volgen en óók m = -2 zou vinden.