Deze vergelijking lukt me telkens niet om volledig op te lossen: 2·cos2x=(1+√3)·(cosx-sinx) Ik begon als volgt met de bedoeling om dus 1 keer een sinus te verkrijgen en een keer een cosinus. 2·(1-2sin2x)=(1+√3)·cosx -(1+√3)·sinx 2- 4sin2x= (1+√3)·cosx-(1+√3)·sinx Hier weet ik niet meer wat te doen met die 4·sin2x om dan te kunnen werken via de regels van asinx+bcosx=c
sara
3de graad ASO - dinsdag 9 april 2013
Antwoord
Vervang cos(2x) eens door cos2(x) - sin2(x) en bedenk dat je dit kunt ontbinden in (cos(x) + sin(x)).(cos(x) - sin(x)) en ineens zie je aan beide zijden iets gemeenschappelijks staan.