Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Stelsel Cramer

Beste,

Bij een homogeen 2x3-stelsel
(vb. a1x + b1y + c1z = 0
a2x + b2y + c2z=0) dan kan men onder bepaalde voorwaarden dit stelsel schrijven als een stelsel van Cramer door met hoofdonbekenden x en y en met nevenonbekenden z te werken (zodat a1x + b1y = -c1z en a2x + b2y = -c2z)
Wat zijn die voorwaarden dan?
Hopelijk kunnen jullie mij (snel) helpen (:
alvast bedankt!

Farah-
3de graad ASO - maandag 25 maart 2013

Antwoord

Dag Farah,

De determinant van die 2x2-matrix die je zou krijgt mag niet gelijk zijn aan 0. Want dan gaat het stelsel van Cramer niet op. Ook is het stelsel van Cramer erg bewerkelijk als de nxn-matrix te groot wordt.

q69959img1.gif

Dan zou het allemaal moeten lukken.

Verder kun je via hier ook nog wel wat info vinden.

Met vriendelijke groet

tb
donderdag 25 april 2013

©2001-2024 WisFaq