Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Sommatie van de faculteit

Wat is de sommatie van x! met invoer van de gehele getallen.

Ik heb partiële sommatie al geprobeerd maar kwam er niet uit.

Dus stel je neemt (x) Som (1>N) x!
En dan moet er dus een formule uit komen waar in N variabel opgezet kan worden. Dus bij N=5 krijg je 1!+2!+3!+4!+5!=152

Partiele sommatie houd in dat je zegt dat
De f(x)g(x)= (SOM) (Delta f(x))g(x)+(SOM)(Delta g(x))f(x))-SOM (Delta f(x) * Delta g(x))

Volgt logischer wijs uit (Delta f(x)g(x))=f(x)g(x)-f(x-1)g(x-1)

En dan de som van alle kanten nemen.

Delta is gedefinieerd als het tegenover gestelde van de Som.

Ik hoop dat het enigszins duidelijk is waar ik op doel. En graag hoor ik of het wel mogelijk is en zo wat het antwoord dan is en hoe je er op komt.

Gerben
Student universiteit - vrijdag 7 december 2012

Antwoord

Er is een formule (zie de link) maar die bevat niet-elementaire functies.
Via wolfram alpha kun je ook wat met de sommen experimenteren.

Zie Wolfram: factorial sums

kphart
zaterdag 8 december 2012

 Re: Sommatie van de Faculteit 

©2001-2024 WisFaq