Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 68900 

Re: Stelsel

Ik kan de eerste vergelijking maal sinalfa doen en de tweede maal cosalfa.
Dan kom ik het volgende uit:

Sinalfa . 23 = 3cosalfa.sinalfa + 20cosbeta.sinalfa

0 = 3 sinalfa . cosalfa + 20 cosalfa . sinbeta

Dan kan ik in mijn eerste vergelijking 3cosalfa.sinalfa vervangen door -20 cosalfa . sinbeta.

En dan krijg ik in mijn eerste vergelijking:
Sinalfa . 23 = - 20 cosalfa.sinbeta + 20cosbeta.sinalfa

En weet ik het weer niet meer...

Hannah
Student universiteit België - maandag 5 november 2012

Antwoord

Het lijkt me niet zo'n goed idee om de vergelijkingen te gaan vermenigvuldigen met iets waar de variabele alpha nog in zit.
Maar laten we eens kijken, zoals je hoop ik weet geldt: -1cos(t)1
Dus -33cos(a)3 en -2020cos(b)20.
Wil uit 3cos(a)+20cos(b) 23 komen dan MOET cos(a)=1 en cos(b)=1.
Waaruit dan automatisch volgt:sin(a)=0 en sin(b)=0.
Gelukkig voldoet dit tweetal aan 0=3sin(a)+20sin(b).
Conclusie:
cos(a)=1 en cos(b)=1 en sin(a)=0 en sin(b)=0.
Dus a=0+2kp en b=0+2kp

hk
maandag 5 november 2012

©2001-2024 WisFaq