Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Logaritmische vergelijkingen

2log x · logx/log4 ·logx/log8 = 4/3

Kim
3de graad ASO - woensdag 22 januari 2003

Antwoord

Hoi,

Je zet best alles in 2log(x):

Bedenk dat log(x)/log(b)=blog(x), dat log(xy)=y.log(x) en dat x=blog(bx).

2log(x).log(x)/log(4).log(x)/log(8)=4/3
2log(x).log(x)/(2.log(2)).log(x)/(3.log(2))=4/3
2log3(x)=6.4/3
2log3(x)=8
2log(x)=2
x=4

Groetjes,
Johan

andros
woensdag 22 januari 2003

©2001-2024 WisFaq