Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Binomiaalcoefficienten

Hallo,

Uit mijn boek moet ik bewijzen dat voor alle n als element van geldt:

$
\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c}
n \\
k \\
\end{array}} \right)} = 2^n
$

Nu heb ik geprobeerd dit te bewijzen met behulp van volledige inductie, maar dit komt niet uit. Van mijn boek word ik niet veel wijzer en ik kan niets vergelijkbaars vinden op internet. Weet u misschien hoe ik dit kan oplossen?
Alvast bedankt!

Margot
Student universiteit - zaterdag 22 september 2012

Antwoord

Ga uit van het binomium van Newton:

$
\begin{array}{l}
(a + b)^n = \left( {\begin{array}{*{20}c}
n \\
0 \\
\end{array}} \right)b^n + \left( {\begin{array}{*{20}c}
n \\
1 \\
\end{array}} \right)ab^{n - 1} + ... + \left( {\begin{array}{*{20}c}
n \\
{n - 1} \\
\end{array}} \right)a^{n - 1} b + \left( {\begin{array}{*{20}c}
n \\
n \\
\end{array}} \right)a^n \\
neem\,\,a = b = 1 \\
\left( {1 + 1} \right)^n = \left( {\begin{array}{*{20}c}
n \\
0 \\
\end{array}} \right) + \left( {\begin{array}{*{20}c}
n \\
1 \\
\end{array}} \right) + ... + \left( {\begin{array}{*{20}c}
n \\
{n - 1} \\
\end{array}} \right) + \left( {\begin{array}{*{20}c}
n \\
n \\
\end{array}} \right) \\
2^n = \sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c}
n \\
k \\
\end{array}} \right)} \\
\end{array}
$

..en meer moet het niet zijn.

Zie ook Wat is het verband tussen de driehoek van Pascal en het binomium van Newton?

WvR
zaterdag 22 september 2012

©2001-2024 WisFaq