Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Differentiaalvergelijking reduceren tot een separabele form

Beste wisfaq,

Bepaalde vergelijkingen van de vorm

g(x,y)dy=f(x,y)dx

kun je separabel maken door de substitutie y/x.

Zij u=y/x en h(u) is een functie van y/x, dan is dy/dx=f/g=h(u). Het volgt dat y(x)=xu(x). Uiteindelijk krijgen we

du/[h(u)-u]=dx/x

ofwel

du/[h(u)-u]=ln(x)+C

Hoe dit wordt verkregen is mij duidelijk.
Dit kun je oplossen voor u(x) door u te substitueren door y/x. En hier loop ik vast. Dus ik weet niet hoe ik de volgende integraal moet oplossen

INT{1/[(dy/dx)-y/x]} d(u/x)

Uiteindelijk moet er komen te staan y=xu(x).

Vriendelijke groeten,

Viky

Viky
Iets anders - dinsdag 7 augustus 2012

Antwoord

Je terugsubstitutie komt te vroeg: éérst $\int\frac1{h(u)-u)}du$ bepalen en dan pas weer $u=y/x$ invullen. De bedoeling van de substitutie is dat (hopelijk) de functie $1/(h(u)-u)$ makkelijk te primitiveren is.

kphart
woensdag 15 augustus 2012

 Re: Differentiaalvergelijking reduceren tot een separabele form 

©2001-2024 WisFaq