Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Ogenblikkelijke verandering

Onze leerkracht vertelde ons vandaag dat bij een voorbeeld van een dalparabool, met een punt gekozen in de rechterhelft. Ze vertelde ons dat de grafiek IN het punt stijgt. Maar een punt kan toch niet stijgen of dalen, volgens mij is het waarschijnlijk rondt een punt dat het stijgt en niet in een punt. Wie heeft gelijk? Graag verdere uitleg

Van Co
3de graad ASO - maandag 12 maart 2012

Antwoord

Een functie is stijgend in een punt als de helling in dat punt groter is dan 0 (Losjes gedefinieerd). Dat is het geval voor alle punten van een dalparabool rechts van de 'top'.
Er wordt ook niet gezegd dat een punt stijgt, maar dat de grafiek stijgend is in dat punt.
Waar jij waarschijnlijk aan denkt is de definitie voor stijgend op een interval:
Een functie f is strikt stijgend op een interval als voor iedere a en b uit dat interval a$<$b impliceert f(a)$<$f(b).
De tweede definitie gaat zo'n beetje in de eerste over als je a en b willeurig dicht bij elkaar neemt.

hk
maandag 12 maart 2012

©2001-2024 WisFaq