Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 66971 

Re: Koordenvierhoek

Oké! Ik denk dat ik het nu snap!
Dus:
Te bewijzen:
A=PQB
CLK=CKL (gelijkbenig)
PQB=CQL (overstaande hoeken)
cQL=180-QCL+CLQ
= 180-A
CQL=180-BAC

& Bij de eerste vraag had ik het volgende:

trek een lijn van B naar L.
BAC + BLC = 180graden. en BLC + CBL + BCL = 180graden ==
BAC= CBL + BCL
BCL= QCL
CBL = KLC (constante hoek)
KLC= QLC == BAC=QCL + QLC

Thom
Leerling bovenbouw havo-vwo - dinsdag 21 februari 2012

Antwoord

Je eerste stukje is correct maar in de vierde regel moet je haakjes ztten om de de hoeken QCL en CLQ.

Bij het tweede deel zoek je het te ver.
ÐA staat op boog BLC.
Boog BL is de boog waar ÐC op staat.
Boog LC is de boog die bij ÐK hoort, maar ÐK = ÐL.
Dus: ÐQCL + ÐCLK = ÐQCL + ÐCKL = 1/2(BoogBL + BoogLC) =
1/2Boog(BLC) = ÐA en daarmee volgt wat je bewijzen wilde.
Je hoeft dus geen extra lijnstukken erbij te halen.

MBL
dinsdag 21 februari 2012

 Re: Re: Koordenvierhoek 

©2001-2024 WisFaq