Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 66456 

Re: Re: Directe en recursieve formule

Hallo,
Ik ben nu bezig met de eigenschappen van de fibonaccigetallen.
Wat betekent ån, i=0 iFi? Ik snap het Engels wat op http://en.wikipedia.org/wiki/Fibonacci_number staat (fourth identity) niet zo goed, dus snap ook niet zo goed waar de vierde eigenschap over gaat. En dus ook niet hoe ik hem moet bewijzen.

Rikje
Leerling bovenbouw havo-vwo - maandag 9 januari 2012

Antwoord

Het gaat om:

$
\sum\limits_{i = 0}^n {iF_i } = nF_{n + 2} - F_{n + 3} + 2
$

Aan de linker kant staat:

$
\eqalign{
& \sum\limits_{i = 0}^n {iF_i } = 0 \cdot 0 + 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 2 + 4 \cdot 3 + 5 \cdot 5 + 6 \cdot 8 + ... + nF_n \cr
& Voorbeelden: \cr
& \sum\limits_{i = 0}^0 {iF_i } = 0 \cdot 0 = 0 \cr
& \sum\limits_{i = 0}^1 {iF_i } = 0 \cdot 0 + 1 \cdot 1 = 1 \cr
& \sum\limits_{i = 0}^2 {iF_i } = 0 \cdot 0 + 1 \cdot 1 + 2 \cdot 1 = 3 \cr
& \sum\limits_{i = 0}^3 {iF_i } = 0 \cdot 0 + 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 2 = 9 \cr
& \sum\limits_{i = 0}^4 {iF_i } = 0 \cdot 0 + 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 2 + 4 \cdot 3 = 21 \cr
& ... \cr}
$

Aan de rechter kant:

$
\eqalign{
& n = 0:0 \cdot F_2 - F_3 + 2 = - 2 + 2 = 0 \cr
& n = 1:1 \cdot F_3 - F_4 + 2 = 2 - 3 + 2 = 1 \cr
& n = 2:2 \cdot F_4 - F_5 + 2 = 6 - 5 + 2 = 3 \cr
& n = 3:3 \cdot F_5 - F_6 + 2 = 15 - 8 + 2 = 9 \cr
& n = 4:4 \cdot F_6 - F_7 + 2 = 32 - 13 + 2 = 21 \cr
& ... \cr}
$

Dat lijkt te kloppen. Bewijzen doe je met volledige inductie. Probeer dat nog maar even!

WvR
maandag 9 januari 2012

©2001-2024 WisFaq