Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Een formule vereenvoudigen met het sommatieteken

Ik heb de volgende formule:

exp(4*t)*p^4/(1-exp(t)*q)^4+4*exp(4*t)*p^3*(1-p-q)/(1-exp(t)*q)^4+6*exp(5*t)*p^3*(1-p-q)^2/(1-exp(t)*q)^5+10*exp(5*t)*p^2*(1-p-q)^3/(1-exp(t)*q)^5+5*exp(6*t)*p^2*(1-p-q)^4/(1-exp(t)*q)^6+6*exp(6*t)*p*(1-p-q)^5/(1-exp(t)*q)^6+exp(7*t)*p*(1-p-q)^6/(1-exp(t)*q)^7+exp(7*t)*(1-p-q)^7/(1-exp(t)*q)^7

Het lijkt me, dat je de formule m.b.v. het sommatieteken als één formule kunt schrijven. Ik heb vooral moeite met de coëfficiënten 1, 4, 6, 10, 5, 6, 1, 1.

Zoudt U me willen helpen?

Ad van
Iets anders - zaterdag 13 augustus 2011

Antwoord

Beste Ad,

Dit is wel een gaaf puzzeltje!

Als ik de formule juist begrijp, staat er:

q65489img1.gif
q65489img2.gif
q65489img3.gif

De coëfficiënten 1, 4, 6, 10, 5, 6, 1, 1 komen uit de driehoek van Pascal en zijn dus binomiaalcoëfficiënten. In jouw formule:

q65489img4.gif
q65489img5.gif
q65489img6.gif

Als je nu de termen met gelijke noemer samenneemt, krijg je:

q65489img7.gif

en dat is niet zo moeilijk onder een sommatieteken te brengen, bijvoorbeeld:

q65489img8.gif

KLY
zondag 14 augustus 2011

©2001-2024 WisFaq