Van een meetkundige reeks van drie termen is de som van de termen 21 en de som van de kwadraten van de termen 189. Welke is die reeks.Stel a+ar+ar2=21;dan a2+(ar)2+(ar2)2 =189. Voor de 1ste vergelijking: a(1+r+r2)=21 $\to$ a=21/(1+r+r2). Nu "a", substitueren in de 2de verge-lijking:{(21/(1+r+r2)}2 .(1+r2+r4) = 189 $\to$ (r4+r2+1)/(r2+r+1)=189/441. De truc stel z=r2 werkt hier niet en daarom kan ik niet verder. Wie weet voor mij de juiste oplossing. Bij voorbaat hartelijk dank.
Johan
Student hbo - donderdag 4 augustus 2011
Antwoord
Johan, Maak gebruik van de volgende betrekking: (r6-1)/(r2-1)=((r3-1)/(r-1))(r3+1)(r+1)